PSEUDOGUAIANOLIDES : A STEREOSELECTIVE APPROACH TO $8(\alpha)$ -OXYGENATED HELENANOLIDES.

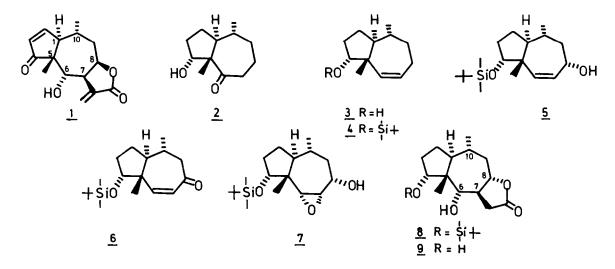
X-RAY STRUCTURAL DETERMINATION OF A SYNTHETIC INTERMEDIATE.

P. Kok, P. De Clercq and M. Vandewalle^{*} State University of Ghent, Department of Organic Chemistry, Laboratory of Organic Synthesis, Krijgslaan, 271 (S.4), B-9000 GENT (Belgium)

J.P. Declercq, G. Germain and M. Van Meerssche, Université de Louvain-La-Neuve, Laboratoire de Chimie Physique et de Cristallographie, Place Louis Pasteur, 1, B-1348 LOUVAIN-LA-NEUVE (Belgium)

SUMMARY

The synthesis of perhydroazulenic lactone $\underline{8}$, a potential precursor for several helenanolides is described. Its structure is determined by X-ray diffraction of the corresponding alcohol $\underline{9}$.


During the past three years several groups have reported on the synthesis of pseudoguaianolides possessing a β -oriented methyl group at C-10, commonly known as ambrosanolides¹. Very recently Grieco and coworkers² performed the first synthesis of a member (<u>1</u>; helenalin) of the helenanolide subgroup, characterized by the reversed configuration at C-10. In previous communications we have described an efficient entry into both series involving stereocontrol at C-10 and which led inter alia to the synthesis of the hydroazulenone <u>2</u>³.

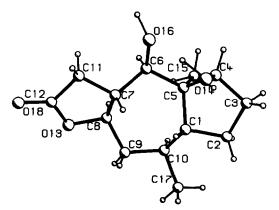
In the present paper we describe a remarkable stereoselective functionalization of the 8-position, a prerequisite condition for synthesizing helenanolides, which all possess an α - or β -oriented oxyfunction (as γ -lactone) at C-8⁴. In a first stage the hydroxyketone <u>2</u> was transformed into olefin <u>3</u> using the Bamford-Stevens sequence : the p-toluenesulfonhydrazone, obtained from <u>2</u> by reaction with p-toluenesulfonhydrazide in ethanol (90°C, 4 h), was treated with methyllithium in ether (25°C, 4 h) yielding <u>3</u> (78 %) |v(neat) 3400, 1650, 1455, 1370 and 1030

2063

cm⁻¹; δ (CDCl₃) 0.88 (3H, s), 0.96 (3H, d), 3.75 (1H, d, 4.8 Hz), $\sqrt{5.76}$ (2H, m); L⁺ at m/z 180|.

After conversion of the alcohol $\underline{3}$ into the tert-butyldimethylsilyl ether $\underline{4}$ (75 % yield, tert-butyldimethylsilyl chloride and imidazole), the introduction of a hydroxyl group at C-8 was achieved in the second sequence.

Treatment of <u>4</u> with N-bromosuccinimide in carbon tetrachloride afforded the diastereoisomeric allylic bromides which were directly converted into the alcohol <u>5</u> (50 % from <u>4</u>) upon reaction with silver carbonate on celite in acetone containing one equivalent water $(0^{\circ}C, 1 h)^{5}$. Although <u>5</u> $|\delta(CDCl_{3})$ 0.76 (3H, s), 3.71 (1H, d, 4.5 Hz), 4.5 (1H, dq, 10.8 and 3 x 2.4 Hz), 5.5-6.0 (2H, m)| was found to be stereohomogeneous absolute proof for the indicated α -orientation at C-8 was only obtained at a later stage. Surprisingly when enone <u>6</u>, obtained from <u>5</u> in 74 % yield by manganese dioxide oxidation in acetone (6 h, r.t.), was reduced with diisobutylaluminum hydride in toluene; the same alcohol <u>5</u> was obtained exclusively (yield 90 %)⁶. We have so far found no rationalization for the remarkable stereoselectivity displayed in both reactions.


The conversion of the alcohol <u>5</u> into lactone <u>9</u> enabled unambiguously its structural determination by a X-ray diffraction study of the latter product. Fast oxidation of <u>5</u> (m-chloroperbenzoic acid in methylene chloride, 90 min, 70 %) yielded the epoxide <u>7</u> |v(KBr)| 3300, 1470, 1250, 1100, 1080, 835 and 770 cm⁻¹; $\delta(CDCl_3)$ 0.75 (3H, s), 0.95 (9H, s), 0.93 (3H, d), 3.09 (2H, AB quartet, $\Delta v_{AB} = 12.3$ Hz,

J = 4.8 Hz), 3.83 (1H, d, 6 Hz), 4.09 (1H, m) |, which was treated with dilithioacetate⁷ (15 eq) in dimethoxycthane (55°C, 48 h); work-up (careful acidification to pf 4) yielded lactone <u>8</u> |v(KBr)| 3500, 1750, 1110, 985 cm⁻¹, $\delta(CDCl_3)|$ 0.78 (3H, s), 0.79 (9H, s), 0.88 (3H, d, 6.5 Hz), 3.88 (1H, m), 4.21 (1H, m), 4.51 (1H, d, 6.5 Hz) | next to unreacted epoxide <u>7</u>. Hydrolysis of the silylether <u>8</u> yielded finally the dihydroxy lactone <u>9</u> $|m.p. 127^{\circ}-128^{\circ}C; v(KBr)|$ 3400, 1785, 1230, 1220, 1110, 990 and 970 cm⁻¹; (M-H₂O)^{+.} at m/z 236; $\delta(CDCl_3)|$ 0.89 (3H, s), 1.01 (3H, d, 6.6 Hz), 3.54 (1H, d, 10 Hz), 4.10 (1H, m), 4.14 (1H, d, 5 Hz) |.

							_
Atom [*]	х		У		z		
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 O13 O14 C15 O16 C17 O18	6479 5807 5743 6424 7416 7974 7550 8213 7393 7155 8038 8294 8398 5330 8683 7595 86273 8439	(4) (6) (7) (5) (5) (5) (5) (5) (5) (5) (5) (4) (3) (4) (7) (4)	5351 5579 6624 6987 6210 6340 5599 4678 4048 4392 5762 4823 4221 7142 62215 3670 4584	(3) (4) (4) (3) (3) (3) (3) (3) (3) (3) (3) (4) (2) (2) (4) (2) (4) (3)	7757 8863 8923 7920 7936 6667 4512 6099 6640 8028 4146 3695 4817 6356 9575 5919 8360 2549	<pre>(6) (6) (8) (5) (5) (5) (6) (6) (6) (6) (6) (4) (7) (5) (8) (5)</pre>	

Table : Atomic coordinates (x 10^4) of <u>9</u>

 $^{ imes}$ The numbers refer to those marked on the stereoview

The structure of the lactone <u>9</u> has been determined by X-ray diffraction; the crystals are monoclinic $P2_{\gamma}/a$, a = 10.666(3), b = 14.593(5), c = 9.423(5)Å, $\beta =$

116.10(3)°, V = 1317.1(1.0)Å³, Mr = 254.33, Z = 4, $D_x = 1.28 \text{ g cm}^{-3}$. 1950 reflections were measured on a Syntex P2 diffractometer, radiation MoKa ($\lambda = 0.7107 \text{ Å}$). The structure was resolved by MULTAN 78⁸, refined by SHELX 76⁹ to a final R = 0.046 for 1365 observed reflections. The atomic coordinates of the carbon and oxygen atoms are given in the table¹⁰. The cyclopentane has a C-5 envelope conformation and the γ -lactone a C-7 envelope conformation; the cycloneptane is a chair with a pseudo-mirror plane passing through C-9 and the midpoint of the 5,6 bond¹⁰.

Lactone <u>8</u> is a potential precursor for helenanolides possessing the α -stereochemistry at C-8 of which several representatives are found in nature⁴. Further work in this area is in progress.

REFERENCES

- R.A. Kretchmer and W.J. Thompson, J. Am. Chem. Soc., <u>98</u>, 3379 (1976);
 P. De Clercq and M. Vandewalle, J. Org. Chem., <u>42</u>, 3447 (1977); P.A. Grieco,
 Y. Ohfune and G. Majetich, J. Am. Chem. Soc., <u>99</u>, 7393 (1977); J.A. Marshall and R.H. Gillison, J. Am. Chem. Soc., <u>98</u>, 4312 (1976); M.F. Semmelhack,
 A. Yamashita, J.C. Tomesch and K. Ilirotsu, J. Am. Chem. Soc., <u>100</u>, 5565 (1978); P. Kok, P. De Clercq and M. Vandewalle, Bull. Soc. Chim. Belges, <u>87</u>, 615 (1978); P.A. Grieco, T. Oguri, S. Burke, E. Rodriguez, G.T. De Titta and S. Fortier, J. Org. Chem., <u>43</u>, 4552 (1978).
- Y. Ohfune, P.A. Grieco, C.-L.J. Wang, G. Majetich, J. Am. Chem. Soc., <u>100</u>, 5946 (1978).
- 3. D. Termont, P. De Clercq, D. De Keukeleire and M. Vandewalle, Synthesis, <u>46</u>, (1977); G.P. Rozing, P. De Clercq and M. Vandewalle, Synthesis, 225 (1978).
- H. Yoshioka, T.J. Mabry and B.N. Timmerman, "Sesquiterpene Lactones", University of Tokyo Press, Tokyo Japan, 1973; J. Romo and H.R. de Vivar, Prog. Chem. Org. Nat. Prod., 25, 90 (1976).
- 5. F. Van Hulle, V. Sipido and M. Vandewalle, Tetrahedron Lett., 2213 (1973).
- 6. The subject of this paper was part of a lecture given at the 7th Workshop Conference Hoechst September 24-27 (1978). At the same occasion Prof. Grieco has reported an identical observation upon the reduction of a similar enone.
- 7. P.L. Creger, J. Org. Chem., <u>37</u>, 1907 (1972); cf. S. Danishefsky, P.F. Schuda, T. Kitahara and S. Etheredge, J. Am. Chem. Soc., <u>99</u>, 6066 (1977).
- 8. P. Main, S.E. Hull, L. Lessinger, G. Germain, J.P. Declercq and M.M. Woolfson (1978). MULTAN 78. A system of computer programmes for the automatic solution of crystal structures from X-ray diffraction data. Universities of York and Louvain.
- 9. G.M. Sheldrick (1976). SHELX 76. Program for crystal structure determination. University of Cambridge, England.
- 10. List of other atomic parameters and structure factors will be supplied on request by M. Van Meerssche.

(Received in UK 12 February 1979)